

FACULTY OF MANAGEMENT SCIENCES DEPARTMENT OF MARKETING AND LOGISTICS

QUALIFICATION: BACHELOR OF LOGISTICS AND SUPPLY CHAIN MANAGEMENT							
QUALIFICATION CODE: 07BLSC LEVEL: 6							
COURSE CODE: FDA621S	COURSE NAME: FORECASTING AND DATA ANALYSIS						
SESSION: NOVEMBER 2019	PAPER: THEORY						
DURATION: 3 HOURS	MARKS: 100						

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER									
EXAMINER(S)	Ms. Emilia Salomo (FT & DI) Mr. Daniel Kandjimi (PT)								
MODERATOR:	Ms. Gloria Tshoopara								

INSTRUCTIONS

- 1. This paper consists of 2 Sections, A and B
- 2. Answer ALL 4 questions in all sections
- 3. Read each question carefully
- 4. Write as legible and precise as possible
- 5. Indicate your class lecturer's name on your answer sheet

THIS EXAMINATION QUESTION PAPER CONSISTS OF 7 PAGES (Including this front page)

QUESTION 1:

[30 marks]

MULTIPLE CHOICE

There are ten multiple choice questions with several possible choices each, choose the best possible answer e.g. 1.1 A. Each question is worth 2 marks.

1. Sum of weights in exponential smoothing is _____.

[2 marks]

- a) < 1
- b) 1
- c) >1
- d) None of the above
- 2. If the demand is 100 during October 2016, 200 in November 2016, 300 in December 2016, 400 in January 2017. What is the 3-month simple moving average for February 2017? [2 marks]
 - a) 300
 - b) 333
 - c) 250
 - d) Need more information
- 3. The last period's forecast was 70 and demand was 60. What is the simple exponential smoothing forecast with alpha of 0.4 for the next period? [2 marks]
 - a) 63.8
 - b) 65
 - c) 62
 - d) 66
- 4. For this set of errors: -1, -4, 0, +2, +3, MAD is:

[2 marks]

- a) 1
- b) 0
- c) 2
- d) -2
- 5. Calculate a weighted 3 month moving average forecast for period 7, using a weight of 0.50 to the most recent period, 0.40 for the next recent period and 0.30 for the most distant period?

 [2 marks]
 - a) 46.6
 - b) 47.6
 - c) 48.6
 - d) 49.6

Period	Demand
1	38
2	40
3	42
4	40
5	44
6	38
7	?

6.	turned smoot a) b) c)	exponential smoothing is being used to forecast demand. The previous for lout to be six units less than actual demand. The next forecast is 66.9, hing constant, alpha, equal to: 0.01 0.15 0.10 0.20	
7.	a) b) c)	mulative forecast error is important for determining the: Mean squared error. Bias in forecast error. Mean absolute deviation. Control limits	[2 marks]
8.	a) b) c)	eries methods discover Pattern in historical data and project it into the future. Include cause-effect relationships. Are useful when historical information is not available. All of the alternatives are true	[2 marks]
9.	is? a) b) c)	easure of forecast error where the absolute amount of error of each forecast Mean squared error (MSE). Mean absolute deviation (MAD). Mean absolute percentage error (MAPE). Bias.	is averaged [2 marks]
10	a) b) c)	of the following is not a step to help an organization perform effective forecast Understand the objective of forecasting. Integrate demand planning and forecasting throughout the supply chain. Understand and identify customer segments. Identify and understand supplier requirements	asting? [2 marks]
11	a) b) c)	of the following is suitable for launching a new product? Moving average Product life cycle analysis Exponential smoothing all of the above	[2 marks]

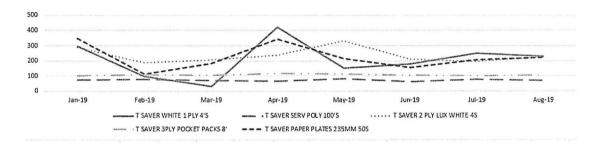
	Helps to set strategy for the firm to meet demand at an aggregated apasses a period of time longer than two years.	level usually [2 marks]
	Strategic forecasting	[=
b)	Tactical forecasting	
c)	Operation	
d)	All of the above	
13. Matur	e products with stable demand	[2 marks]
a)	Are usually easiest to forecast.	
b)	Are usually hardest to forecast.	
c)	Cannot be forecast.	
d)	Do not need to be forecast.	
14. The m	oving average forecast method is used when?	[2 marks]
a)	Demand has observable trend or seasonality.	
b)	Demand has no observable trend or seasonality.	
c)	Demand has observable trend and seasonality.	
d)	Demand has no observable level or seasonality	
15. In whi	ch of the following forecasting technique, subjective inputs obtained from va	rious sources
are an	alysed?	[2 marks]
a)	Judgemental forecast	
b)	Time series forecast	
c)	Associative model	

Section A subtotal: 30 marks

d) All of the above

SECTION B: STRUCTURED QUESTIONS

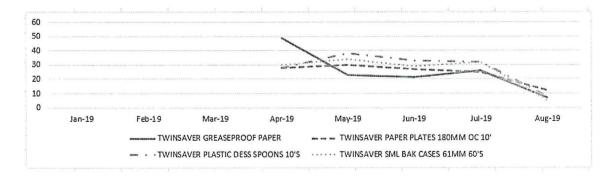
[70 MARKS]


QUESTION 2 [15 marks]

2.1 Analyse the below inventory scenarios, both scenarios used a 4 month moving average, critique

August forecast and MAPE for each scenario? [10 marks]

Scenario A


Product Description	Jan-19	Feb-19	Mar-19	Apr-19	May-19	Jun-19	Jul-19	Aug-19	Aug. forecast	stock on hand	[error]
T SAVER WHITE 1 PLY 4'S	296	98	30	421	150	180	248	231	250	321	8%
T SAVER SERV POLY 100'S	74	75	68	65	80	62	75	68	71	61	4%
T SAVER 2 PLY LUX WHITE 4S	289	187	206	237	331	208	195	227	243	358	7%
T SAVER 3PLY POCKET PACKS 8'	101	108	104	115	113	105	102	104	109	37	5%
T SAVER PAPER PLATES 235MM 50S	347	110	182	343	213	154	207	221	229	108	4%
										MAPE	5%

Scenario B

Product Description	Jan-19	Feb-19	Mar-19	Apr-19	May-19	Jun-19	Jul-19	Aug-19	Aug. forecast	stock on hand	error
TWINSAVER GREASEPROOF PAPER				49	23	21	26	7	30	3	4 325%
TWINSAVER PAPER PLATES 180MM OC 10'				28	30	27	25	12	28	3	4 129%
TWINSAVER PLASTIC DESS SPOONS 10'S				28	38	33	32	8	33	2	6 309%
TWINSAVER SML BAK CASES 61MM 60'S				30	34	29	32	5	31	2	3 525%
										MAPE	3229

Hint: analyse the stock on hand

2.2 You have tried to forecast your demand using exponential smoothing with alpha = 0.3.

[5 marks]

Period	Actual At	Forecast Ft	At-Ft	(At - Ft)^2	abs(At-Ft)
1	37	37	0.00	0.00	0.00
2	40	37.0	3.00	9.00	3.00
3	41	37.9	3.10	9.61	3.10
4	37	38.8	-1.83	3.35	1.83
5	45	38.3	6.72	45.14	6.72
6	50	40.3	9.70	94.15	9.70
7	41	43.2	-2.21	4.87	2.21
8	47	42.5	4.45	19.84	4.45
9	40	43.9	-3.88	15.07	3.88
10	52	42.7	9.28	86.17	9.28
11	42	45.5	-3.50	12.26	3.50
12	54	44.5	9.55	91.17	9.55
		47.3			
Sum	526.0	491.6	34.4	390.7	57.2

a) Calculate the Tracking Signal.

[3 marks]

b) Is your forecast doing well? Justify your answer.

[2 marks]

QUESTION 3	[30 MARKS]
3.1 Evaluate any 5 importance of data analytics to an organizations	[20 marks]
3.2 Discuss any 5 common features and assumptions inherent in forecasting?	[5 marks]
3.3 Explain why it is more challenging to forecast for a new product?	[5 marks]

QUESTION 4 [25 MARKS]

Analyse the multiple regression output shown below and answer below questions

	Υ	X1	X2	Х3	X4					
ty	Number of weekly riders	Price per week	Population of city	Monthly income of riders	Average parking rates per month					
L	192,000	\$15	1,800,000	\$5,800	\$50					
2	190,400	\$15	1,790,000	\$6,200	\$50	SUMMARY OUTPUT				
3	191,200	\$15	1,780,000	\$6,400	\$60					
4	177,600	\$25	1,778,000	\$6,500	\$60		Rear	ession Stati	tics	
5	176,800	\$25	1,750,000	\$6,550	\$60	Multiple R	neg.	23310111011111		994408579
6	178,400	\$25	1,740,000	\$6,580	\$70					
7	180,800	\$25	1,725,000	\$8,200	\$75	R Square	100 (100 (100 (100 (100 (100 (100 (100			988848422
8	175,200	\$30	1,725,000	\$8,600	\$75	Adjusted R Square			0.	979927159
9	174,400	\$30	1,720,000	\$8,800	\$75	Standard Error			10	031.084247
.0	173,920	\$30	1,705,000	\$9,200	\$80	Observations				10
	OVA			df		55	MS	F	Significance F	
Res	gression						117839722	110.84176	0.000045596939	
Res	sidual				5	5315673.625	1063134.73			
Tot	al				9	476674560				
_				Coeffic	ients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Int	ercept				107588.634	89284.2569	1.20501237	0.2821151	-121923.8547	337101.123
Pri	ce per week				-1360.467369	122.1788478	-11.1350483	0.0001019	-1674.538096	-1046.39664
	pulation of cit				0.04891443		1.0612279	0.3371339	-0.069569592	0.16739846
	nthly income				1.5006353		2.15298845	0.0839273	-0.291063027	3.29233343
Ave	erage parking	rates pe	r month		135.2881792	128.1012734	1.05610331	0.3392548	-194.0066273	464.582986
RES	IDUAL OUTP	υT								
	Obser	vation	Pr	edicted Number	of weekly riders	Residuals		Naumal D	unhahilita da	
			1		190695.6968			Normai P	robability Plo	t
			2		190806.8069		ب 195000 ت			
			3		191970.67: 178418.23:		190000		•	•
			5		177123.6596		18 18 18 17 5000 mg 17 5000		*	
			6		178032.416		\$ 175000		• • •	

4.1 Write down the regression equation for the above data?

[4 marks]

100

40

Sample Percentile

60

4.2 Carefully study the regression output above and interpret the below results?

180406.1695

174204.0868

174259.6416

174802.6201

[1 mark] a) What does the normal probability plot/ scatterplot indicate? [5 marks] b) R square c) Significance F [5 marks] d) Coefficients [5 marks] [5 marks] e) Residuals output

393.8304677

995.9132321

140.3583585

-882.6201184

170000

Section B subtotal: 70 marks

GRAND TOTAL: 100 MARKS